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Dynamic nuclear polarization has gained high popularity in recent years, due to advances in the exper-
imental aspects of this methodology for increasing the NMR and MRI signals of relevant chemical and
biological compounds. The DNP mechanism relies on the microwave (MW) irradiation induced polariza-
tion transfer from unpaired electrons to the nuclei in a sample. In this publication we present nuclear
polarization enhancements of model systems in the solid state at high magnetic fields. These results were
obtained by numerical calculations based on the spin density operator formalism. Here we restrict our-
selves to samples with low electron concentrations, where the dipolar electron–electron interactions can
be ignored. Thus the DNP enhancement of the polarizations of the nuclei close to the electrons is
described by the Solid Effect mechanism. Our numerical results demonstrate the dependence of the
polarization enhancement on the MW irradiation power and frequency, the hyperfine and nuclear
dipole–dipole spin interactions, and the relaxation parameters of the system. The largest spin system
considered in this study contains one electron and eight nuclei. In particular, we discuss the influence
of the nuclear concentration and relaxation on the polarization of the core nuclei, which are coupled
to an electron, and are responsible for the transfer of polarization to the bulk nuclei in the sample via spin
diffusion.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Dynamic nuclear polarization (DNP) is a method to enhance
NMR signals by transferring spin polarization from paramagnetic
ions or single unpaired electrons to their neighboring nuclei.
Although DNP has been known to practitioners of magnetic reso-
nance for almost half-a-century, in the last one and half decades
the interest in this technique has increased significantly, mainly
due to recently proposed potential applications to solid state
NMR, NMR of biological systems and clinical MRI [1–5]. One of
the main goals of current research in DNP is optimization of the
technique so that one can achieve the largest nuclear polarization
enhancement in the shortest time for different experimental
conditions. This optimization can gain significantly from better
theoretical understanding of the physical mechanisms involved
in the process.

The DNP phenomena, was predicted by Overhauser in 1953
[6] and demonstrated by Carver and Slichter not long after [7].
Overhauser proposed that MW saturation of the ‘‘allowed’’ single
quantum (SQ) EPR transitions of a conduction electron coupled
to a nuclear spin in a metal-type sample would lead to polariza-
ll rights reserved.
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tion transfer from the electron spin to the nuclear spin. Subse-
quently this experiment was repeated on liquid solutions
containing nuclear and electron spins [8,9]. The enhancement
in these cases results from the difference between the zero
quantum (ZQ) and double quantum (DQ) relaxation rates caused
by field fluctuations originating from the motion of the electrons.
A detailed description of the Overhauser effect can be found
in the reviews of Hausser et al. and Mueller-Warmuth et al.
[10,11].

Following these experiments Jeffries proposed in 1957 [12]
that one can transfer polarization from the electron to the nu-
cleus in a hyperfine coupled electron–nucleus pair by irradiating
at the ZQ and DQ ‘‘forbidden’’ EPR transitions. As he describes
it, the hyperfine coupling can result in some mixing between
the Zeeman nuclear manifolds ‘‘allowing’’ these transitions. This
mechanism was expected to be efficient for paramagnetic sub-
stances in the solid state. The theoretical foundations for what
is known today as the ‘‘Solid Effect’’ (SE) were further developed
and demonstrated experimentally by Abragam, Jeffries and others
[13–17]. The theoretical approach was phenomenological by
introducing rate equations that describe the effects of the micro-
wave irradiation and the different relaxation mechanisms on the
bulk polarization of the system. These models were used for
qualitative predictions of the dependence of the SE enhancement
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on the microwave power and irradiation frequency and on the
relaxation parameters [18–20]. The SE theory predicts that DQ
and ZQ irradiations result in positive and negative enhance-
ments of the NMR signals, respectively. A clear experimental
signature of this mechanism is that, at least in the case when
the ZQ and DQ transitions are well resolved, the difference in
irradiation frequency of the positive and negative enhancement
peaks is twice the nuclear Larmor frequency.

In 1964 Abragam and Borghini [21] reformulated the SE mech-
anism in terms of spin temperature theory, previously developed
by Redfield [22], Solomon [23] and Provotorov [24]. In this frame-
work the SE is described as cooling of the nuclear spin bath by the
irradiation on the forbidden transitions. Spin temperature theory
predicted however an additional effect which originates from
the combined cooling of the electron spin–spin interaction bath
and the cooling of the nuclear spin bath by excitation of the DQ
or ZQ transitions. The irradiation frequencies for which this
process will lead to the best positive or negative enhancement de-
pend on the strength of the electron spin–spin interactions and
are different from those of the SE. As a result when this effect
dominates the DNP enhancement process the frequency differ-
ence between the positive and negative peaks in the DNP
spectrum is smaller than twice the nuclear Larmor frequency. In
1967 Hwang and Hill showed, that when measuring proton
enhancements in polystyrene doped with free radicals at low rad-
ical concentrations, one gets a SE type of frequency dependence.
However, when the radical concentration is increased there is
an additional enhancement of the positive and negative polariza-
tions and their peak positions shift towards each other [25], just
as predicted by Abragam and Borgini. Following these experimen-
tal results they proposed a theoretical model, based on previous
work by Kessenikh and Manenkov [26,27], which takes into
account the existence of separate electron spin packets in the case
of an inhomogeneously broadened EPR line. The effect, which they
called the Cross Effect (CE), results then from the electron dipole–
dipole coupling between these spin packets, enabling transfer of
spin populations between the packets combined with a flipping
of nuclear spin states [28]. Based on their work, the term CE is
now typically used to describe the process of MW-driven polari-
zation transfer in a system with two interacting electron spins
with Larmor frequencies separated by the nuclear Larmor fre-
quency [29,30]. The process described by Abragam and Borghini
was termed thermal mixing (TM) and is now used to describe
systems with many interacting electrons coupled to nuclei as
was described in a comprehensive review by Abragam and
Goldman [19].

All mechanisms mentioned above describe the transfer of polar-
ization from the electron spins to their nearby hyperfine coupled
nuclear spins. To complete the picture it is necessary to realize that
in typical DNP experiments the electron spin concentration is rel-
atively low and the bulk nuclear polarization is achieved by an
additional transfer of polarization from the nearby nuclei to the re-
mote bulk nuclei via a spin diffusion process. The DNP process is
therefore quite complex and many of the theoretical discussions
of the different DNP mechanisms take only the first part of the
transfer into account. For a qualitative understanding of the exper-
imental results all different transfer aspects must be considered
and an important example of such a study is the work of Wind
and coworkers [20,31]. They were also the first to combine DNP
with magic angle spinning (MAS). During the last 15 years Griffin
and his coworkers have contributed much to the understanding,
development, and applications of MAS–DNP as described in a
recent review [32].

In the past years with the revival of interest in DNP one of the
focuses has been on the enhancement of nuclear polarization
during DNP experiments at high fields, where the early theories
predicted a depletion of the enhancements. In the case of solution
DNP at high fields, recent experimental results demonstrate that
for high microwave powers one can achieve NMR signals that are
higher than predicted theoretically [33–35]. For radicals mixed in
frozen solutions, it has been shown that for systems in which the
SE is the only DNP mechanism the enhancements are quite low
[36,37]. However, for systems in which the CE and TM mechanisms
dominate large nuclear signals are obtained at high fields [36,38].
Amplifying the microwave irradiation intensity increases the
DNP yield even further. This was demonstrated by Griffin et al.
after the introduction of a gyrotron as their microwave source, as
reviewed in [32]. An additional improvement in enhancement
was achieved by the introduction of bi-radicals as polarizers
[39,32]. The increased electron spin dipole–dipole interaction in
this case, due to the proximity of the two electron spins in the mol-
ecule, contribute to CE type processes. The search for the ideal
polarizer (bi-radical, tri-radical, etc.) [38] is still ongoing and can
definitely gain from a better understanding of the different DNP
mechanisms.

In this and the following publication we intend to revisit the dif-
ferent solid-DNP mechanisms, by performing computer simula-
tions of the nuclear polarization enhancement in model systems.
The simulations are based on the spin density matrix formalism,
using the full Liouville representation as well as approximate cal-
culations of the quantum state populations using rate equations.
This is different from the commonly used approach which as pre-
viously described is based on phenomenological rate equations for
the spin polarization. Here we will restrict ourselves to the SE-DNP
mechanism, while in the following publication we will discuss CE
processes.

After the introduction of all relevant spin interactions in elec-
tron–nuclear spin systems, we will define the relaxation parame-
ters that describe the spin–lattice and spin–spin mechanisms in
these systems and discuss the effect of the microwave irradiation.
We will then introduce the simulation procedures we have used
and will apply these methods to follow the nuclear polarizations
around a single electron, starting with a simple electron–nucleus
two-spin system. We will then follow this process for three and
nine-spin systems, and mention the complexity of larger spins sys-
tems when describing SE-DNP phenomena.

2. Theoretical methodology

2.1. The spin interactions and relaxation

Throughout this and the following paper we will concentrate on
the spin dynamics of a system in the solid state, composed of Ne

unpaired electrons (S = 1/2) and Nn equivalent nuclei (I = 1/2), in
an external magnetic field. Taking the hyperfine and dipolar inter-
actions between all N = Ne + Nn spins into account, and assuming
that the system experiences a continuous microwave (MW) irradi-
ation, the spin Hamiltonian of this system in the MW rotating
frame can be represented by [40]

H ¼ HZ þ Hhfi þ HD þ Hd þ HMW ¼ H0 þ HMW: ð1Þ

The first term HZ corresponds to the off-resonance values of the
electrons and the nuclear Zeeman interaction. The second term Hhfi

represents the electron–nuclear hyperfine interaction (hfi), trun-
cated with respect to the electron Zeeman interaction (i.e. keeping
the pseudo-secular terms). The next two terms are the dipole–di-
pole interactions between the electrons a, b = 1, . . . ,Ne, represented
by HD, and between the nuclei i, j = 1, . . . ,Nn, represented by Hd. The
last term, HMW, represents a MW field applied in the x-direction,
perpendicular to the external magnetic field. For simplicity, all spin
interaction terms are combined in H0, not including HMW. The terms
of H are given by:
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HZ ¼
X

a¼1...;Ne

DxaSz;a �xn

X
i¼1;...;Nn

Iz;i; ð2Þ

Hhfi ¼
X

a¼1;...:;Ne
i¼1;...;Nn

Az;aiSz;aIz;i þ
1
2
ðAþaiSz;aIþi þ A�aiSz;aI�i Þ;

HD ¼
X
a<b

Dabð3Sz;aSz;b � Sa � SbÞ;

Hd ¼
X
i<j

dijð3Iz;iIz;j � Ii � IjÞ;

HMW ¼ x1

X
a¼1;...;Ne

Sx;a:

Dxa are the off-resonance values, defined by the difference be-
tween the electron Larmor frequencies xe,a and the MW frequency
xMW, Dxa = xe,a �xMW. xe,a is determined by the principal values
and orientation of the �g-tensor of the electron a. The nuclear Larmor
frequencies of all nuclei are assumed to be equal to xn, ignoring
chemical shift differences. The hfi coefficients Az,ai and A�ai are the
secular and pseudo-secular parts of the electron–nuclear dipolar
interaction, and Da,b and di,j are the dipolar interaction coefficients
between the electrons and the nuclei, respectively. These coeffi-
cients are proportional to (rai)�3, (rab)�3 and (rij)�3, respectively,
and are anisotropic, depending on the polar angles defining the
orientation of the vectors in the laboratory frame, �rai;�rab, and �rij,
connecting the spins. Finally, x1 is the nutation frequency of the
MW irradiation field. In the pure product states of the spins (where
each individual spin is represented by its jai or jbi state) the pseu-
do-secular hyperfine terms, A�ai, and the flip–flop terms of HD and Hd

are off-diagonal. These terms are responsible for the DNP polariza-
tion transfer from the electrons to the nuclei in the system.

In addition to the static Hamiltonian we must include possible
spin–lattice and spin–spin relaxation mechanisms in our descrip-
tion of the DNP signal enhancement. Here we will not derive expli-
cit expressions for the T�1

1 and T�1
2 relaxation rates of our system

but will only consider the type of interactions that are the sources
of these rates. Thus we will introduce characteristic relaxation
parameters that define the magnitudes of these rates. For a spin
system defined by the spin Hamiltonian of Eq. (1), the thermal
equilibrium state is defined by a density matrix qK

eq, which is diag-
onal in the eigenstate representation of the Hamiltonian. We must
therefore provide relaxation rates in this diagonalized frame. The
diagonalization of H0, of dimension 2N � 2N, can be represented by:

K0 ¼ D�1H0D: ð3Þ

Applying the same diagonalization to the spin density operator q(t)
in the original product state representation gives:

qKðtÞ ¼ D�1qðtÞD: ð4Þ

The eigenstates of K0 are written as: jkki, with k = 1, . . . ,2N and
are linear combinations of the pure product states. The populations
of the states are by definition equal to the diagonal elements:

pkðtÞ ¼ hkkjqKðtÞjkki: ð5Þ

In our calculations we will assign to each jkki ! jkk0 i transition a
spin–lattice relaxation rate, T�1

1;kk0 , affecting the difference between
the populations ðpkðtÞ � pk0 ðtÞÞ, and introduce spin–spin relaxation
rates, T�1

2;kk0 , affecting the off-diagonal elements of the density matrix

of the form hkkjqKðtÞjkk0 i.
The values of the single transition relaxation rates, T�1

1;kk0 , can be
derived by assuming time fluctuating interactions proportional to
some spin operator Xn that causes relaxation. The operator Xn can
be linear, e.g. fluctuations in the coefficients of 2Sx and 2Ix which
can be sources of T�1

1;e and T�1
1;n, respectively, or bilinear, e.g.

4
P

a;iA
��
ai S�a I�i , which can be sources of T�1

1;DQ . We can generally
assume that after diagonalization the effect of these fluctuations
on each jkki ! jkk0 i transition is proportional to the squares of ma-

trix elements jhkkjD�1XnDjkk0 ij
2 [18]. Our approach in this paper is

therefore to chose a set of T�1
1

h i
n

relaxation rates for the pure prod-

uct state system which are in the order of the magnitude of exper-
imentally known values (when available). Based on these rates we
calculate the rates of the individual transitions in the diagonalized
K0 representation, using

T�1
1;kk0 ¼

X
n

jhkkjD�1XnDjkk0 ij
2 T�1

1

h i
n
; ð6Þ

where we sum over all basic relaxation mechanisms.
When we apply the diagonalization matrix D on the interaction

Hamiltonian H0, we must do the same to HMW, resulting in
KMW = D�1HMWD. The matrix elements of KMW, which connect
the eigenstates of K0, can be considered as effective MW irradia-
tion fields applied on specific transitions

x1;kk0 ¼ 2hkkjD�1HMW Djkk0 i: ð7Þ

During the DNP experiments we are interested in monitoring
the NMR free induction decay signals of the nuclei after a single
90� pulse. The initial intensity of these signals can be determined
by calculating

SiðtÞ ¼ TrðqKðtÞD�1Iz;iDÞ; ð8Þ

for each spin i prior to the application of the pulse at time t. In the
diagonal representation these intensities are linear combinations of
the diagonal and off-diagonal elements of qK(t). The contributions
from these off-diagonal elements can become significant when they
are large. Their magnitudes are mainly determined by the MW irra-
diation fields x1;kk0 (note that K0 is diagonal) and the relaxation
rates T�1:

2;kk0 . In addition they can exhibit oscillating time dependenc-
es induced by K0. As long as these elements are small, we can ne-
glect their contributions to Si(t) and can replace the initial signal
intensities by polarizations, defined as:

PiðtÞ ¼ Trð½½qKðtÞ��D�1Iz;iDÞ; ð9Þ

where the operator [[qK(t)]] contains only the diagonal matrix ele-
ments of qK(t). These polarizations are thus only dependent on the
populations of the jkk> states. As will be shown later, in the DNP
experiments discussed here the off-diagonal elements of qK(t)
during the MW irradiation can indeed be ignored and we will only
consider the populations Pi(t), even when we discuss NMR signals.

The result of the DNP process can be characterized in several
ways. One option is to follow the polarization of the nuclei Pi(t)
as defined in Eq. (9). Another possibility, which is more relevant
experimentally, is to define the enhancement factor as

pn;i ¼ PiðtÞ=Pið0Þ; ð10Þ

where Pi(0) are the thermal equilibrium polarizations

Pið0Þ ¼ Tr qK
eq

h ih i
D�1Iz;iD

� �
: ð11Þ

For the theoretical description it is more convenient to compare
the nuclear polarizations with the thermal equilibrium polariza-
tion of the electron,

Pað0Þ ¼ �Tr qK
eq

h ih i
D�1Sz;aD

� �
; ð12Þ

defining an enhancement factor

pe;iðtÞ ¼ PiðtÞ=Pað0Þ: ð13Þ

The advantage of this definition is that the denominator does
not depend on the choice of the nucleus.

In summary, our spin system is thus defined by the interaction
coefficients Az;ai; A�ai;Dab and dij in Eq. (2), derived from the spatial
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configuration of the system, and the relaxation rates T�1
1=2;kk0 . During

cw DNP experiments the MW irradiation is defined by the param-
eters x1 and Dxa. As will be shown, in order to describe the
polarization enhancements, we must take all these parameters
simultaneously into account.

In the forthcoming sections we will use Eq. (13) to evaluate the
efficiency of a DNP experiment and follow these parameters for dif-
ferent spin systems as a function of the relaxation parameters and
MW irradiation fields.
Fig. 1. Configurations of the core nuclei around a single electron, as defined in Eq.
(14). These configurations were calculated assuming a simple cubic lattice of nuclei
with a single electron at the center. In (a) the nuclei are all 1H and the length of the
lattice parameter is 3.1 Å and in (b) the nuclei are 13C and the lattice parameter is
10.4 Å. The external magnetic field points in the z-direction.
2.2. The core and bulk nuclei

It is customary to distinguish between ‘‘core’’ and ‘‘bulk’’ nucle-
ar spins. The distinction between these two types depends on the
relative strength of the hyperfine interactions with respect to
the nuclear dipole–dipole interactions Hd. The diagonal terms of
the hfi can truncate the off diagonal flip–flop terms of Hd and
thereby reduce the polarization transfer efficiency between the
nuclei. We will define the ‘‘core’’ nuclei as those that are coupled
to one or more electrons via a hyperfine interaction that is strong
enough to truncate significantly the dipolar flip–flop matrix
elements with their neighboring nuclei. The rest or ‘‘bulk’’ nuclei
are coupled via dipole–dipole interactions that are not or only
partially quenched by the hyperfine interactions. The boundary
between these two kinds of nuclei in a spin system is not well
defined and depends on the condition one chooses for the hyper-
fine truncation efficiency.

Thus in order to make a clear distinction between core and bulk
nuclei, and without introducing a third kind of ‘‘boundary’’ nuclei,
we must define a set of conditions that determine which nuclei be-
long to the core. The question of defining this boundary also known
as the ‘‘diffusion barrier’’ has been discussed in the context of spin
diffusion and different definitions can be found as summarized re-
cently [41]. We have chosen that a nucleus i belongs to our core
when the magnitudes of the off-diagonal matrix elements dij/2,
connecting states that differ in aibj M biaj, are smaller than one fifth
of the differences between their corresponding diagonal matrix
elements. These differences are determined by the hfi matrix ele-
ments and we define therefore that the core nuclei satisfy:

5jdi;j=2j < 1
2
jAz;ai � Az;ajj þ

1
8xn

A�a;i
��� ���2 � A�a;j

��� ���2� �����
����

� �
: ð14Þ

Here we take into account the shifts of the diagonal elements in-
duced by the pseudo-secular terms of the hfi calculated by pertur-
bation theory. Our condition for the core nuclei defined in Eq.
(14) is of course somewhat arbitrary, but it provides insight into
the size and shape of the core around, for example, a single electron.
We do realize that the core and bulk nuclei at the core-bulk inter-
face do not necessarily differ much in terms of their hyperfine
and dipole–dipole interaction. In most NMR experiments on DNP
enhanced signals we detect mainly bulk nuclei, while the DNP
mechanisms enhance directly the polarization of the core nuclei.
Thus, a necessary step in the enhancement of NMR signals is the
spin diffusion process. Here we are mainly interested in the SE
mechanism which enhances the core nuclei. We will leave the
discussion of the spin diffusion (SD) process in multi-nuclear spin
systems for later. The polarization transfer to the bulk nuclei during
the DNP process via SD in a model system will be discussed in a
future publication.

Before continuing our description of the DNP mechanisms, we
first show an example of the configuration of the core around a sin-
gle electron. In Fig. 1 two core configurations are shown: One for a
system of protons located on a simple cubic lattice with an electron
at the center of the lattice and a unit vector of 3.1 Å. The other of
13C spins in a similar lattice with a unit vector of 10.4 Å. These
distances correspond to a nuclear spin concentration of 55 M and
1.5 M, respectively. The volume of the core decreases with c or
with an increase of the concentration of the nuclear spins.
2.3. The EPR and NMR spectra

At this point it is important to discuss some general features of
the EPR and NMR spectra of our spin systems. Although most of
this discussion is well known, in particular to the EPR community,
we will use it to introduce some concepts that will assist us in the
rest of the paper. The frequency ranges of the two types of spectra
are determined by the frequencies of the detectable transitions be-
tween the eigenstates of the Hamiltonian. Starting from a basis set
of pure product states spanning H0, we can group these states
according to the sum of the z-components of the angular momenta
of the electrons and nuclei, noted by Me and Mn respectively. Each
interaction term of H0 in Eq. (2) has its own on- and off-diagonal
matrix elements in this representation. The diagonal elements of
HZ determine the rotating frame Zeeman energies of the degener-
ate {jMe,Mn0i} manifolds of states. The diagonal elements of the



Fig. 2. The EPR spectra of the model e—nNn systems used for Fig. 1 with (a) a cubic
lattice of 1H nuclei and (b) of 13C nuclei. For the calculation all nuclei in a cube of
10 � 10 � 10 spins around the electron were taken into account while the direction
of the magnetic field was making an angle of 10� with the z-axis of the cube. The
spectra were simulated using the secular terms of the hfi, AziSzIzi, and calculating the
transition probabilities of the DQ and ZQ transitions corresponding to each nucleus

according to A�i
�� ��=2xn
� �2

. In the figure the ZQ and DQ spectra were multiplied by a
factor of 2 � 103 and 3 � 106, respectively. The lines were convoluted using a

Lorentzian line shape with a width of T�1
2 =p, where T�1

2 ¼ 2� 10�5 s�1.
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hfi and the dipolar interactions must be added to those energies
and are proportional to Az,ai/4, Dab/2 and dij/2, respectively. The
off-diagonal elements of the pseudo-secular hfi terms connect
states with DMn = ±1, the nuclear d-interactions connect states
with DMn = 0, and the electronic D-dipolar interactions with
DMe = 0. Therefore, during diagonalization of H0 the dipolar inter-
actions mix states inside each {jMe,Mni} manifold, while the pseu-
do-secular hfi mixes states with DMn = ±1, and to a much lower
extent with jDMnj > 1. As a result the mixed eigenstates can still
be assigned by well defined Me values, while the nuclear states
are mixed. However, when jAþaij � xn we can keep assigning the
eigenstates of the whole system according to fj½Me�; ½M�

n�ig, where
the brackets indicate the state mixing by the dipolar interactions
and the asterix the fact that there is a minor mixing of states with
DMn – 0.

The observed spectra are determined by the values of matrix
elements of Sþa and Iþi between eigenstates. The NMR spectrum
appearing around xn, corresponds to the transition between states
with DMn = ±1 and DMe = 0. Its spectral lines are (homogeneously)
broadened due to the d-interactions and split by the hfi. The dipo-
lar broadening can be up to tens of kHz for protons and the hyper-
fine splittings up to several MHz. These last splittings are in general
not detectable in standard NMR experiments.

The EPR spectrum is composed of spectral lines with DMe = ±1.
The nuclear selection rules for the EPR spectrum are mainly
DMn = 0, but can also be equal to DMn – 0. The spectrum can there-
fore be subdivided into the main spectral band and the ‘‘forbidden’’
bands, respectively. The main band is of course inhomogeneously
broadened by the off-resonance shifts Dxa and the diagonal hfi
and D-coefficients and homogeneously broadened by the flip–flop
terms of HD. For small Ne values this band is composed of a set of
isolated lines. The ‘‘forbidden’’ bands are removed from the Dxa

positions in the main band by about ±xn and in principle also by
±2xn, etc. The contributions of the latter will be small and
will be left out of our discussion. Thus we can distinguish between
two forbidden frequency bands: the double quantum (DQ) spec-
trum with DMe ¼ �1; DM�

n ¼ �1 and the zero quantum (ZQ)
spectrum with DMe ¼ �1; DM�

n ¼ 	1. The positions of the DQ
and ZQ spectra can overlap with the main band, depending on their
width. Their spectral features are determined by all interactions
and therefore these spectra have a similar width as the main EPR
band but significantly lower amplitudes.

The EPR spectrum will of course become simple when the sys-
tem contains a very small number of interacting electrons. For
example, a spin system similar to that used in Fig. 1 has an EPR
spectrum shown in Fig. 2. Here the frequencies of the DQ or ZQ
transitions associated with each nucleus i are determined by eval-
uating the eigenvalues of HZ + Hhfi, ignoring the pseudo-secular
terms and the dipolar terms, and searching for transition frequen-
cies between pairs of states that differ only in bebi M aeai or beai

M aebi, respectively. The amplitudes of these transitions were set
equal to A�i

�� ��=2xn
� �2

. All transitions of all spins were broadened
by a spin–spin relaxation rate T�1

2 ¼ 2� 105 s�1 and were added
together. The two important factors determining the overall shape
of the EPR spectrum are the gyromagnetic ratio of the nuclei, c, and
their concentration. The ratio c will effect both xn and all hfi coef-
ficients, while the concentration affects only the hfi. The positions
of the centers of the ZQ/DQ transitions relative to the main EPR line
depend only on c and their intensities only on the concentration.

In many modern DNP studies the samples are amorphous
glasses, containing radicals with randomly oriented g-tensors
resulting in powder spectra. Experimentally, we are therefore
observing spectra of electrons with different Dxa values which
interact with each other, resulting in typical homogeneously and
inhomogeneously broadened EPR powder spectra. In the present
paper we will mainly consider spin systems that are composed of
a single electron that is not interacting with neighboring electrons
and that is surrounded by a collection of core nuclei. In the case,
where powders or non-crystalline samples are considered, the
spectra are a sum of individual spectra of non-interacting and ran-
domly orientated electron-core systems. In our next publication on
CE-DNP this restriction will be removed and electron–electron
interactions will be taken into account.

3. Methods of simulations

3.1. Calculations in Liouville space

In order to study the DNP mechanisms we will follow the time
evolution of the spin density operator q(t) of the spin system under
investigation. This is influenced by the parameters of the interac-
tions included in H0, by HMW and by the relaxation rates. These
can all be combined in the Liouville superoperator [43] which
determines the temporal evolution of q(t). Before transferring the
Hamiltonian to its superoperator form, we diagonalize H0 as in
Eq. (3), resulting in K0 with eigenvalues kk and eigenstates jkki.
Next the diagonalization matrix D is applied to the MW terms,
resulting in KMW = D�1HMWD, which remains non-diagonal. Then
we transfer K0 + KMW to its Liouville superoperator form, with ele-
ments hkk; kk0 jK0 þKMW jkk00 ; kk000 i, and try to solve the equation:

d�qKðtÞ
dt

¼ �ðiðbK0 þ bKMWÞ þ bRÞ�qKðtÞ; ð15Þ

where �qK is a vector composed of the elements of the density ma-
trix qKðtÞ ¼ D�1qðtÞD. bR is the relaxation superoperator composed
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of all relaxation rates T�1
1=2;kk0 . The formal solution of the above rate

equation for the time independent bK0, bKMW and bR superoperators is

�qKðtÞ ¼ bUðtÞ�qKð0Þ ð16ÞbUðtÞ ¼ expf�ðiðbK0 þ bKMWÞ þ bRÞtg:
The elements of the thermal equilibrium spin density vector, in

the diagonalized frame, are given by:

pkð0Þ ¼ Z�1 expf�ðkk þxMW Me;kÞ�h=kBTg; ð17Þ

where Me,k is the total z-component of the jkki state and xMW is the
MW irradiation frequency, determining the transformation opera-
tor to the rotating frame. Z is a normalizing partition function such
that Tr(qK(0)) = 1, kB is the Boltzmann constant, and T is the
temperature.

The bR supermatrix is constructed from individual spin–lattice
and spin–spin relaxation rates T�1

1;kk0 and T�1
2;kk0 of all transitions

jkki ! jkk0 i. The actual values of these rates will be discussed later.
The matrix elements of bR are equal to a sum of single transition
operators bR2;kk0 and bR1;kk0

bR ¼X
k<k0

bR2;kk0 þ bR1;kk0 ð18Þ

with

hkk; kk0 jbR2;kk0 jkk; kk0 i ¼ hkk0 ; kkjbR2;kk0 jkk0 ; kki ¼
1

T2;kk0
ð19Þ

and

hkk; kkjbR1;kk0 jkk; kki ¼
ekk0

1þ ekk0

1
T1;kk0

ð20Þ

hkk; kkjbR1;kk0 jkk0 ; kk0 i ¼ �
1

1þ ekk0

1
T1;kk0

hkk0 ; kk0 jbR1;kk0 jkk0 ; kk0 i ¼
1

1þ ekk0

1
T1;kk0

hkk0 ; kk0 jbR1;kk0 jkk; kki ¼ �
ekk0

1þ ekk0

1
T1;kk0

;

with the Boltzmann factors

ek;k0 ¼ expfðkk � kk0 Þ�h=kbTg: ð21Þ

The values of T�1
1;kk0 were determined in two ways. In the case of

an e–n spin system, we chose a single T�1
1;e value for all main EPR

transitions, T�1
1;DQ ¼ T�1

1;ZQ values for the ZQ and DQ transitions and
a nuclear T�1

1;n for the core nucleus (Fig. 3). In the e–n2 and e–n8

model systems, we begin with a choice of T�1
1;e and nuclear

T�1
1;i¼1...Nn

values in the pure product representation and calculate
the values T�1

1;kk0 in the diagonalized representation, assuming a
source of relaxation as described in Section 2.1. For T�1

2;kk0 we assign
Fig. 3. Energy level diagram of a two-spin e–n system. The *’s indicate the small
state mixing due to the pseudo-secular part of the hfi at high fields. The spin–lattice
relaxation time of the electron, T1,e, is indicated by the blue solid arrows, and those
of the nucleus and the DQ and ZQ transitions, T1,n and T1,DQ/ZQ, by blue dashed
arrows. In addition, the DQ MW irradiation is indicated by the red double headed
arrow. The electron Zeeman energies are scaled.
to all transitions with DMe = 0 a value T�1
2;n, and to all EPR transi-

tions, with DMe = ±1, a value T�1
2;e . Overall, an effort was made to

chose relaxation rates that are of the order of magnitudes found
in actual experimental systems.

3.2. Calculations in Hilbert space

During the Liouville space calculations we must diagonalize
the Liouville superoperator which is of size 4N � 4N in a N-spin
system. In practice these dimensions limit our ability to solve
the Von-Neumann–Liouville equation numerically for large N val-
ues. In an upcoming publication we will show that in the case of
SE-DNP we can derive coupled rate equations for the populations
of the eigenstates of the spin interaction Hamiltonian, introducing
a rate matrix of size 2N � 2N. The evolution of the spin polariza-
tions in the system can then be calculated by diagonalization of
the rate matrix. To derive the rate equations we must first diago-
nalize our Hamiltonian in Hilbert space, K0 = D�1H0D as previ-
ously described, resulting in eigenstates jkki with k = 1, . . . ,2N. In
this representation the matrix elements of the density operator
are hkkjqKjkk0 i, where qK(t) = D�1q(t)D. Applying D to the MW
Hamiltonian will result in off-diagonal matrix elements of magni-
tude x1;kk0 ¼ 2hkkjD�1HMW Djkk0 i that represent single transition
effective MW irradiation fields. These effective MW fields have
off-resonance values defined by Dxkk0 ¼ hkkjK0jkki � hkk0 jK0jkk0 i.
The relaxation parameters introduced earlier are also defined as
single transition relaxation rates T�1

1;kk0 and T�1
2;kk0 . Each transition

in the eigenstate manifold of the spin system is therefore charac-
terized by its own MW, off-resonance and relaxation rates. We
can now derive the dynamics of the whole spin system by simul-
taneously solving the Bloch equations for the populations,
hkkjqK(t)jkki, and coherences, hkkjqKðtÞjkk0 i, of each single transi-
tion. In the SE-DNP case, when x1;kk0 ; T

�1
1;kk0 � T�1

2;kk0 , the time evolu-
tions of the population differences are (almost) independent of
the coherences such that the latter can be neglected when
hkkjqK(0)jkki– 0 and hkkjqKð0Þjkk0 i ¼ 0. Thus the calculations can
be restricted to the populations only, and we can write a rate
equation for the vector of all populations pKðtÞ with elements
pK

k ðtÞ = hkkjqK(t)jkki:

d
dt

�pKðtÞ ¼ �ðRMW þ R1Þ�pKðtÞ: ð22Þ

The 2N � 2N rate matrix has two parts: the MW matrix
RMW ¼

P
k<k0RMW ;kk0 is composed of a sum of RMW ;kk0 , which have

nonzero elements that are derived from the reduced Bloch equation
population differences when x1;kk0 ; T

�1
1;kk0 � T�1

2;kk0 for each k, k
0
pair:

hkkjRMW;kk0 jkki ¼ hkk0 jRMW;kk0 jkk0 i ¼
ðx1;kk0 Þ

2T2;kk0

1þ Dxkk0T2;kk0
ð23Þ

hkkjRMW;kk0 jkk0 i ¼ hkk0 jRMW;kk0 jkki ¼ �
ðx1;kk0 Þ

2T2;kk0

1þ Dxkk0T2;kk0
;

and the spin–lattice relaxation matrix R1 ¼
P

k<k0R1;kk0 , where the
R1;kk0 matrixes have nonzero elements derived using the expressions
in Eq. (20):

hkkjR1;kk0 jkki ¼ �hkk0 jR1;kk0 jkki ¼
ekk0

1þ ekk0

1
T1;kk0

ð24Þ

hkk0 jR1;kk0 jkk0 i ¼ �hkkjR1;kk0 jkk0 i ¼
1

1þ ekk0

1
T1;kk0

:

The solution of Eq. (22) provides us with the time dependent
populations from which we can evaluate the polarizations of the
individual spins by calculating the dot-product

PiðtÞ ¼ �pKðtÞ � Iz;i; ð25Þ

where Iz;i is a vector composed of all diagonal elements of D�1IiD.
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4. The solid effect – theory and simulations

The SE -DNP mechanism is responsible for the polarization
enhancement of nuclei surrounding a single electron. The
Hamiltonian of such an electron coupled to Nc nuclei is defined
by the off-resonance term DxeSz, the nuclear Zeeman termsP

ixnIz;i, the electron–nuclear hfi terms
P

i Az;iIz;i þ 1
2 ðA

þ
i Iþi þ

	
A�i I�i ÞgSz and the nuclear dipole–dipole interaction terms

P
i<jdij

ð3Iz;iIz;j � Ii:IjÞ. Here we consider only spin systems with hyperfine
interactions that are much smaller than the nuclear Zeeman inter-
action, Azi; A�i � xn. In what follows we also limit ourselves to the
polarization of (core) nuclei which are in proximity to the electron.
The dij parameters of these nuclei are partially quenched by the hfi,
but can become significant, in particular for core nuclei removed
from the electron. We will begin our discussion with a two-spin
e–n case and describe the basic nuclear SE enhancement mecha-
nism. Then we will extend the system to three-spin e–n2 and
nine-spin e–n8 systems, and we will end with some remarks con-
cerning multi-nuclei core systems.
4.1. The e–n spin system

4.1.1. Ideal DNP polarization enhancement
The simplest system exhibiting the SE is a single electron

coupled to a single nucleus. The spin Hamiltonian H0 can be easily
represented in the simple product states composed of jMei = jaei,
jbei and jMni = jani, jbni. The only off-diagonal elements of the spin
Hamiltonian of this system are the A±/4 pseudo-secular terms be-
tween the states jae,ani and jae,bni and between jbe,ani and jbe,
bni. Diagonalization of H0 is therefore straightforward (namely
two 2 � 2 diagonalizations), resulting in [40]:

jk1i ¼ jbe;a�ni ¼ cbjbe;ani þ sbjbe;bni ð26Þ
jk2i ¼ jbe;b

�
ni ¼ �sbjbe;ani þ cbjbe;bni

jk3i ¼ jae;a�ni ¼ cajae;ani þ sajae;bni
jk4i ¼ jae;b

�
ni ¼ �sajae;ani þ cajae; bni:

For A±/4�xn the values of the coefficients become

cb=a ffi 1� 1
2
jAþj
4xn

� �2

ffi 1; sb=a ’ jA
þj

4xn
; ð27Þ

and the energies of K0, using perturbation theory up to second or-
der are given by:

k1 ¼
1
2
�Dxe �xn �

1
2

Az �
1
8
jAþj2



xn

� �
ð28Þ

k2 ¼
1
2
�Dxe þxn þ

1
2

Az þ
1
8
jAþj2



xn

� �

k3 ¼
1
2

Dxe �xn þ
1
2

Az �
1
8
jAþj2



xn

� �

k4 ¼
1
2

Dxe þxn �
1
2

Az þ
1
8
jAþj2



xn

� �
:

As follows from Eq. (26) the jkki states are almost pure product
states. As a consequence the EPR spectrum is composed of two lines,
at Dxe ¼ � 1

2 Az, the DQ spectrum of one line, at Dxe ¼ xnþ
1
8 jA

þj2=xn, and the ZQ spectrum of one line, at Dxe ¼ �xn�
1
8 jA

þj2=xn. The NMR spectrum contains two lines at xn 	 1
2 Azþ

1
8 jA

þj2=xn.
The same diagonalization applied to the MW term HMW results

in KMW, with effective MW fields of magnitudes

x1;3 ¼ x2;4 ¼ ðcbca � sbsaÞx1 ’ x1 ð29Þ

for the allowed EPR transitions, and
x1;4 ¼ x2;3 ¼ ðsacb þ cbsaÞx1 � sx1 ’
jAþj
2xn

x1 ð30Þ

for the DQ (2 ? 3) and the ZQ (1 ? 4) transitions. The scale factor s
is inversely proportional to the external field, and is invariant to the
type of nucleus (for a fixed e–n distance). Thus, irradiation at the DQ
or ZQ transition, corresponding in the rotating frame to an off-res-
onance irradiation at Dxe ffi ±xn, results in an effective MW irradi-
ation of x1,DQ/ZQ ’ sx1 that is on-resonance for the DQ/ZQ
transitions, with DxDQ/ZQ = Dxe 	xn ’ 0. At this condition the
MW irradiation is far off-resonance from the SQ EPR transitions,
and its effect on the transition can be ignored as long as x2

1T1;e �
x2

nT�1
2;e .

The normalized equilibrium populations of our two-spin system
can be expressed as

pK
1 ð0Þ ¼ pK

2 ð0Þ ¼
1
2

1
1þ ee

; ð31Þ

pK
3 ð0Þ ¼ pK

4 ð0Þ ¼
1
2

ee

1þ ee
;

with ee the electron Boltzman factor exp (�⁄xe/kBT). To simplify the
derivations we ignore here the nuclear Boltzman factor. As a result
the nuclear polarization, equal to Pn ¼ 1

2 ðpK
1 � pK

2 þ pK
3 � pK

4 Þ; and the
electron polarization, equal to Pe ¼ 1

2 ðpK
1 � pK

3 þ pK
2 � pK

4 Þ, are at
thermal equilibrium

Pnð0Þ ’ 0; ð32Þ

Peð0Þ ¼
1
2

1� ee

1þ ee
:

To evaluate the nuclear polarization during irradiation of the
DQ transition we must take into account the values of the DQ
(2 ? 3) MW irradiation together with its T�1

2;DQ and T�1
1;DQ ¼

T�1
1;23 relaxation rates as well as of T�1

1;e , T�1
1;ZQ ¼ T�1

1;14 and T�1
1;n ¼

T�1
1;12 ¼ T�1

1;34. According to the steady state Bloch equations, this
MW irradiation will result in a steady state end population
difference:

fp2ðtÞ�p3ðtÞg¼
1þðDxDQ T2;DQ Þ2

1þðDxDQ T2;DQ Þ2þðsx1Þ2T1;DQ T2;DQ

fp2ð0Þ�p3ð0Þg;

ð33Þ

for all t� T1,DQ. Thus, the DQ irradiation creates a non-Boltzman
distribution of populations, which results in p2(t) = p3(t) when the
saturation condition s2x2

1 � T�1
1;DQ . T�1

2;DQ is fulfilled at DxDQ = 0. (A
similar expression can be derived for the irradiation on the ZQ
(1 ? 4) transition).

For an electron T1,e that is much higher than the other relaxation
rates, the SQ transitions will reach the steady state ratios for
t� T1,e:

p3ðtÞ
p1ðtÞ

¼ p4ðtÞ
p2ðtÞ

¼ ee: ð34Þ

Combining these ratios with the DQ saturation p2(t) = p3(t), will give
by a straightforward calculation the steady state polarizations:

PnðtÞ ¼
1
2

1� ee

1þ ee
¼ Peð0Þ; ð35Þ

PeðtÞ ¼
1
2

1� ee

1þ ee
¼ Peð0Þ:

In a similar manner saturation of the ZQ transition results in
p1 (t) = p4(t) and together with Eq. (34) we reach the end
polarizations:

PnðtÞ ¼ �PeðtÞ ¼ �Peð0Þ: ð36Þ



Table 1
The interaction and relaxation parameters
used during the simulations. All other param-
eters, and modifications of the values given
here, are given in the figure captions.

Parameter Value

Az,1/2p �0.46 MHz
Aþ1 =2p 1.38 MHz
xn

a/2p(1H) 144 MHz
Dxe xn

x1 0.1 MHz
T1,e 10 ms
T1,n 2 s
T1,DQ/ZQ

b 103 s
T2,e,DQ,ZQ 10 ls
T2,n 1 ms

a Unless stated otherwise in the figure cap-
tions, simulations were performed using 1H
spins. xn/2p = 36 MHz was used for 13C spins.

b This value was used for the e–n system,
unless stated otherwise in the figure captions.
For the multi-nuclei systems T1,DQ/ZQ was
calculated from T1,e, as explained in the text.

Fig. 4. The nuclear polarization (black) as a function of Dxe, due to a long MW
irradiation. The polarizations were calculated for (a) a single e–n spin pair, and (b) a
sum of e–n spin pairs, with the parameters taken from Table 1. In (b) the orientation
of the g-tensor of the electron, with principal components gxx = 2.0034, gyy = 2.0031,
and gzz = 2.0027 MHz, was varied and the polarizations, obtained for 52,274 pairs of
a and b ROSELEB angles over a full sphere [46] [47], were added together. The blue
inserts in the figure show the corresponding EPR spectrum.
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Thus in these ideal cases the nuclear and electron polarizations be-
come equal in magnitude and the nuclear enhancements becomes
pe = ±1 for irradiation of the DQ or ZQ transitions, respectively. At
high temperatures (above 10 K at 3.3 T) this results in about
pn = ±ce/cn (A similar derivation can be found in [44]). In summary,
the SE mechanism results in a re-distribution of the populations,
such that in the ideal case the nucleus becomes polarized while
the electron maintains its initial polarization.

In the presence of high nuclear relaxation rates, the nuclear
relaxation process together with the saturation of the DQ or ZQ
transition will drive the nuclear polarizations back to their nuclear
Boltzman distribution at t� T1,n, T1,ZQ

p2ðtÞ
p1ðtÞ

¼ p4ðtÞ
p3ðtÞ

¼ en ’ 1; ð37Þ

and when the DQ/ZQ cross relaxation rates increase the system re-
turns to its electron Boltzman distribution

p3ðtÞ
p2ðtÞ

¼ ee or
p4ðtÞ
p1ðtÞ

¼ ee; ð38Þ

for DQ or ZQ irradiation, respectively. Both relaxation processes
are counter active to the action of T�1

1;e and the relative values of
T�1

1;n and T�1
1;DQ=ZQ with respect to T�1

1;e determine the final polariza-
tions. This will result in a depletion of the end polarizations, jPn(t)j,
Pe(t) < Pe(0), when the condition T�1

1;e � T�1
1;n; T�1

1;DQ=ZQ is not met. This
was experimentally demonstrated in a recent publication [45].

Additionally, high T�1
1;n and T�1

1;DQ=ZQ rates will prevent the irradi-
ated states from reaching saturation, resulting in Pn(t) < Pe(t). The
effect of T�1

1;n can be understood as an effective T�1
1;DQ=ZQ relaxation

in Eq. (33), generated from it’s combination with T1,e. For example,
when T�1

1;n � T�1
1;DQ the DQ spin–lattice relaxation rate T�1

1;DQ in Eq.
(33) should be replaced by T�1

1;n.
The effect of T�1

2;DQ=ZQ on the nuclear polarization is evident from
Eq. (33), where lowering of these rates results in an increased
polarization when DxDQ/SQ ’ 0. Similarly, a decrease in the value
of T�1

2;e , or more correctly in that of T�1
1;eT�1

2;e , will increase the influ-
ence of the MW field on the main EPR lines. This will result in a
lowering of the electronic polarization, which in turn reduces the
end nuclear polarization.

4.1.2. Simulations of polarization enhancements
We will now show some results of the time dependence of the

polarizations of the e–n system during MW irradiation, obtained by
Liouville space calculations. These calculations were performed
using a self-written MATLAB (MathWorks �) based program. The
interaction and relaxation parameters used for these calculations
are given in Table 1 and in the figure captions. In all calculations
the nucleus has the cn value of a proton. Unless stated otherwise,
we chose that T�1

1;DQ=SQ � T�1
1;n and in all cases Az�xn. At the start

we show in Fig. 4 the nuclear polarization as a function of Dxe,
after a long MW irradiation of an intensity x1/2p = 0.1 kHz. This
is shown for (a) for a single e–n pair, and in (b) for a sum of e–n spin
systems, where the g-tensor of the electrons was randomly
oriented. The principal values of the g-tensors of all systems are
gxx = 2.0034, gyy = 2.0031, and gzz = 2.0027 MHz, similar to the
values of trityl radicals [37]. The blue insert in the figure shows
the corresponding EPR spectrum.

In Fig. 5a the build up with time of the polarizations are shown
for two MW irradiation fields applied at the DQ transition. For
these simulations the MW nutation frequencies were set equal to
x1/2p = 0.1 MHz (solid lines) and 0.02 MHz (dashed lines), where
only the first satisfies the saturation condition. While for
x1/2p = 0.1 MHz the build up time during the MW irradiation on
the DQ transition is much faster than T�1

1;n, for x1/2p = 0.2 MHz they
are of a similar time-scale. This last case is accompanied by a
decrease of the end nuclear polarization. In Fig. 5b the time depen-
dence of the populations of the four-level system are shown, dem-
onstrating the ability of the MW to saturate the jae;a�ni ! jbe; b

�
ni

transition, while T�1
1;e effects the populations by bringing them to

the ratios given in Eq. (34). Changes in the values of T�1
2n ð6 T�1

2e Þ
and Az (�xn) had no observable effects on the results shown here.

Modifying the T�1
1;n and the T�1

1;DQ ¼ T�1
1;ZQ rates, for an on-reso-

nance DQ irradiation with x1/2p = 0.1 MHz, results in end nuclear
polarizations that are shown in Fig. 6. Here we restricted ourselves



Fig. 5. The time evolution of the polarizations and populations, during a long DQ
MW irradiation on an e–n spin system. The calculations were performed for a MW
irradiation strengths of 0.1 MHz (solid lines) and 0.02 MHz (dashed lines). The
interaction and relaxation parameters were taken from Table 1. The polarizations of
the nucleus (black) and electron (blue) are plotted in (a) and the corresponding
populations of the eigenstates in (b).
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to T�1
1;DQ ; T�1

1;n 6 T�1
1;e=10. At high values of these rates the MW irra-

diation can not saturate the DQ transition, and the end nuclear
polarization is reduced. The fact that this contour looks symmetric
demonstrates the similarity of the effects of T�1

1;n and T�1
1;ZQ on the

nuclear polarization as long as T�1
1;DQ ; T�1

1;n < T�1
1;e. In what follows

we will therefore only consider the influence of T�1
1;n on Pn(t), with

T�1
1;DQ � T�1

1;n < T�1
1;e.

To demonstrate the dependence of the nuclear and electron
polarizations on the MW field intensity at the DQ transition, we
Fig. 6. The effect of the nuclear and DQ/ZQ spin–lattice relaxation rates on the DNP
end polarization of the nucleus in an e–n spin system. The colorbar represents the
value of Pn(t)/Pe(0). The interaction and all other relaxation parameters used for the
simulations were taken from Table 1. The relaxation rates were kept in the range
T�1

1;e=10 P T�1
1n;DQ ;ZQ , with T�1

1;DQ ¼ T�1
1;ZQ in all cases.
show end polarizations as a function of x1/2p in Fig. 7a. for two
T�1

1;n values, 2 s and 10 s. Up to saturation the end nuclear polariza-
tion is as expected from the solution of the steady state solution of
the Bloch equations in Eq. (33). A decrease in T�1

1;n results in a shift

of the saturation condition, s2x2
1 � T�1

1;nT�1
2;DQ , and thus a shift of the

x1-dependence of the polarization. At high MW powers the nucle-
ar and electronic polarizations decrease due to off-resonance irra-
diation of the main EPR lines. In Fig. 7b the dependence of the
polarization buildup time tR as a function of x1 is drawn. Here tR

is the time it takes for the nuclear polarization, Pn, to reach
(1 � e�1) of its final value, Pn(tR) = (1 � e�1)[Pn(t) � Pn(0)] + Pn(0),
with t� T1,n,DQ. For low MW intensities the buildup time becomes
similar to T�1

1;n. At higher MW intensities, neglecting the effect of
the off-resonance irradiation on the main EPR transitions, tR be-

comes shorter, almost following the value of (sx1Þ�2T�1
2;DQ (Eq.

(23)), until it reaches the limiting T1,e value.
Finally the off-resonance effect around the DQ transition is

examined for different MW intensities. Once again, the off-reso-
nance dependent nuclear end polarization profile in Fig. 8 shows
a Lorentzian lineshape. Its linewidth can become of much impor-
tance when DNP enhancement experiments are performed on
samples with a large anisotropic g-tensor. The polarization buildup
time is again close to T1,n for large DxDQ values, in analogy to the
on-resonance irradiation at low MW intensities.
4.2. Multiple core nuclei

Up to this point we considered only a single core nucleus. We
will now extend our discussion to multiple core nuclei surrounding
Fig. 7. The effect of the MW irradiation field strength on the steady state end
polarizations and buildup times, for an on-resonance irradiation of the DQ
transition of an e–n spin system. The value of T�1

1;n was chosen equal to 0.5 s�1

(solid lines) and 0.1 s�1 (dashed lines), with all other parameters taken from
Table 1. In (a) the nuclear (black lines) and electron (blue lines) end polarizations
are plotted. In (b) the nuclear buildup time tR is plotted. The three gray horizontal
lines (top to bottom) indicate the values of the two nuclear relaxation rates T�1

1;n and
the electron relaxation rate T�1

1;e . The decaying straight line follows the expression
ðsx1Þ�2T�1

2;DQ .



Fig. 8. Nuclear polarization as a function of the off-resonance value DxQD, around
the DQ transition at DxDQ = Dxe �xn. The polarization profiles were calculated for
an e–n spin system, using x1/2p values of 0.02 MHz (solid blue line), 0.1 MHz (solid
black line), and 1 MHz (dashed blue line). All other parameters were taken from
Table 1.
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a single electron. In what follows we present the main features of
the SE-DNP process that are influenced by the hfi terms coupling
the electron with all nuclei in the system. As in the two-spin case,
the DNP polarization enhancement is a result of the interplay be-
tween the MW irradiation field and the spin–lattice relaxation
parameters. The spin state dimension of the multi-core system
complicates the evaluations of the individual nuclear polarizations
and we will show only results from systems with up to nine-spins.
Some issues concerning the polarization transfer from the core
nuclei to the bulk nuclei will also be mentioned at the end of the
discussion, but will not be the focus of this publication.
Fig. 9. The nuclear polarizations during a SE-DNP experiment on an e–n2 system, as
a function of the MW frequency around the DQ transitions. The polarizations of the
nuclei are given by the black (nucleus-1) and red (nucleus-2) lines, respectively. The
secular hfi coefficients during the simulations were Az1 = 0, and Az2 = 2 MHz in (a)
and Az1 = Az2 = 2 MHz in (b), respectively with the pseudo-secular coefficients
A�1 ¼ 1:38 MHz, and A�2 ¼ 2:11 MHz in (a) and (b). The nuclear relaxation rate of
nucleus-1 was T�1

1;1 ¼ 0:5 s�1. For nucleus-2 T�1
1;2 ¼ 0:5 s�1 (solid lines) and

T1,2 = 1 s�1 (dashed lines) were used. The nuclear dipolar interaction was neglected
in all cases. All other parameters were taken from Table 1.
4.2.1. The DQ and ZQ spectra
We start by considering a system with a single electron hyper-

fine coupled to Nc core nuclei. At first we will discuss the possible
polarization enhancements of all nuclei in the system. To simplify
this discussion we ignore for the time being all mutual nuclear
dipole–dipole interactions. Thus the Hamiltonian of our system
contains only the Zeeman interactions HZ and the hyperfine inter-
actions Hhfi. Because the last is small with respect to the nuclear
Zeeman interaction, diagonalization of the form

K0 ¼ D�1ðHZ þ HhfiÞD ð39Þ

will mix the original product states jae,Mi and jbe,Mi, with
M ¼ � 1

2 Nc; . . . ; 1
2 Nc , only in a minor fashion. This state mixing was

represented before by adding an asterix to M�, and the eigenfunc-
tions almost maintain their original product state form. There are
2Nc�1 DQ (or ZQ) transitions for each nucleus i that correspond to
a simultaneous interchange between be � ae and bi � ai (or ai � bi),
with a total of Nc � 2Nc�1 DQ (or ZQ) transitions. The 2Nc�1 lines
composing the DQ (or ZQ) spectra of a single spin have frequencies
DxDQ,i (or DxZQ,i) that can easily be evaluated, taking only the sec-
ular part of Hhfi into account:

DxDQ ;i ¼ Dxe �xn þ
1
2

X
fajg¼�1�j – i

ajAz;j ð40Þ

DxZQ ;i ¼ Dxe þxn þ
1
2

X
fajg¼�1�j – i

ajAz;j

where {aj} = ±1 presents all 2Nc�1 permutations of all nuclei j – i.
The spread of the transitions of the DQ (or ZQ) spectra correspond-
ing to nucleus i are therefore determined by the sum of all jAz,jj val-
ues of all other nuclei, j – i. Thus the overall width of the spectrum
of each i will mainly depend on the hfi of the core nuclei j closest to
the electron. Furthermore, the spread of frequencies for nuclei close
to the electron will be smaller than those of far nuclei. These
Fig. 10. A schematic representation of the populations of a e–n2 spin system during
a SE-DNP experiment, where only one of the DQ transitions is irradiated. The MW
irradiation is assumed to affect only the transition jae,(an1,an2)*i? jbe, (bn1,an2)*i,
corresponding to one of the two DQ transitions of nucleus-1. The astrix * indicates
the small hfi state mixing. The left column shows the thermal equilibrium
populations (not in the right scale) of the e–n2 system. The red arrows indicate
the equilibration of the populations corresponding to the DQ irradiation. The
middle column represents the populations after the saturation of the irradiated
transition and the action of T�1

1;e (blue arrows). The later influences the positions of
the irradiated levels and the highest and lowest populations in the middle column.
The other four populations maintain their initial values. Introducing nuclear
relaxation result in an additional shift of the population. Here we assumed that the
nuclei have different relaxation rates: T�1

1;e � T�1
1;2 � T�1

1;1. The effect of T�1
1;2 (dashed

blue arrows), in combination with the MW irradiation and T�1
1;e relaxation, is shown

in the right column. In this special case, irradiation of a single DQ transition of spin-
1 can still result in a polarization with pe;1 = 1.



186 Y. Hovav et al. / Journal of Magnetic Resonance 207 (2010) 176–189
frequency spreads are on the order of the total DQ (or ZQ) EPR line
width, which in general is much larger than the effective DQ (or ZQ)
MW irradiation field.

In Eq. (40) we ignored the small shift in the energies resulting
from the pseudo-secular terms A�i SzI

�
i . However, these terms are

the origin of the MW irradiation of the DQ (or ZQ) transitions.
Since the A�ci

SzI�ci
terms commute with each other, the pairs of

states that differ only in ai and bi will mix according to Eq.
(26) and result in an effective irradiation strength six1 of the
form given in Eq. (27).
4.2.2. The nuclear polarizations
To demonstrate the potential of the SE-DNP nuclear enhance-

ment process let us consider an ideal situation, in which the MW
irradiation field could excite and saturate all DQ transitions in
the system and T�1

1;e � T�1
1;n;DQ ;ZQ for all transitions. Neglecting the

dipolar interactions between the nuclei, it can be shown that in
this ideal case the polarization of each nucleus i becomes
Pi(t) = ±Pe(0) for DQ and ZQ irradiation, respectively (see Appendix
A). Introduction of the dipolar interactions complicates this deriva-
tion. It’s effect will be discussed later using simulations.

In practice the MW field is not strong enough to saturate all DQ
or ZQ transitions. Even if we assume that the effective irradiation
sx1 for the transitions is sufficient to saturate the DQ transitions
on-resonance sx1T1,DQT2,DQ� 1, the transitions at an off -reso-
nance values of

DxDQ ¼ six1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1;DQ=T2;DQ

q
; ð41Þ

will be saturated only by 50% and for larger values by much less.
When we consider the 1H sample used in Fig. 2a, and choose the
values six1/2p = 1 kHz, T2,DQ = 5 ls and T1,DQ = 1 s, we can see that
only a small part of these transitions will be excited, and we can
not expect large nuclear polarizations. We can expect an improve-
ment for smaller c-values and nuclear concentrations. This can be
seen clearly in Fig. 2b, where a 13C sample is considered. Reduction
of the nuclear concentration of the whole sample has however some
drawbacks. It diminishes the number of (observable) hyperpolar-
ized nuclei, it possibly lowers the scale factors si, and decreases
the dipolar interactions, responsible for the bulk polarization via
spin diffusion. It may therefore be desired to remove only nuclei
close to the electron, for example by deuteration during 1H-DNP
experiments or low 13C enrichment isotope labelling, during 13C-
DNP experiments. In the next section examples of reduced end
polarizations will be demonstrated for a small core configuration.

4.2.3. The polarizations of an e–n2 system
After discussing the general features of a system of core nuclei

located around a single electron, we will now show some numeri-
cal results that demonstrate the interaction and relaxation param-
eter dependence of the nuclear polarizations. As a start let us
consider a simple three-spin model system with one electron cou-
pled to two nuclei (i = 1, 2), that are not dipolar coupled. The values
of the hfi coefficients we have chosen for this system are
Az;1 ¼ 0; A�1 ¼ 1:38 MHz, and Az;2 ¼ 2 MHz; A�2 ¼ 2:11 MHz. As a
result the DQ spectrum of nucleus-2 consists of one line and that
of nucleus-1 of two lines. All other parameters are given in Table 1,
with T�1

1;1 ¼ T�1
1;2 ¼ 0:5 s�1. while the T�1

1;kk0 rates were derived follow-
ing the discussion in Section 2.1, assuming the linear operators, Sx

and Ix,i, are the source of the relaxation mechanism. We note here
that during all our simulations the initial thermal equilibrium
nuclear polarizations are determined by Eq. (21), including en < 1.
The parameters of the e–n2 system are chosen such that for an
e–n system with the parameters of nucleus-1 or nucleus-2 the
end polarization will be Pe(0).
Following the above discussions, we expect that the polariza-
tion of nucleus-1, when irradiated at one of its DQ transitions
Dxe ¼ xn � 1

2 Az;2, will reach only Pe(0)/2. In Fig. 9a (solid lines)
the end polarizations of the two-spins, after a DQ irradiation, are
shown as a function of the off-resonance value DxDQ = Dxe �xn.
The P2(t) value reaches a value close to Pe(0), but P1(t) exceeds
Pe(0)/2. An increase of T�1

1n;2 by a factor of 2 changes the off-
resonance dependence of the end P1(t) as is shown Fig. 9a
(dashed line).

The reason for the unexpected value of the P1(t) polarization is a
result of the presence of the nuclear T�1

1;n’s. The combined action of
the MW irradiation on one of the DQ satellites of spin-1 together
with the T�1

1;2 of spin-2 has a constructive effect on P1(t). This can
be understood best when we consider the extreme situation
T�1

1;1 � T�1
1;2 � T�1

1;e which results in an end P1(t) that approaches
Pe(0) during DQ irradiation of one of the spin-1 satellites only. This
is schematically demonstrated in Fig. 10, where the evolution of
the populations of our eight-level system is followed under the
influence of the MW field (together with T�1

2;e), T�1
1;e and T�1

1;2.
An irradiation at the frequency of a DQ transition corresponding

to one particular nucleus polarizes only that nucleus, as is evident
from Fig. 9a. However when the DQ transitions of both nuclei have
similar frequencies, the polarizations of the two nuclei become
dependent on each other. This effect is demonstrated in Fig. 9b,
where we choose an exact overlap of DQ satellites with Az,1 =
Az,2 = 2 MHz. At this condition the maximum end polarizations
decrease with respect to those in Fig. 9a. This simple calculation
demonstrates the importance of performing the calculations on
the populations of the different quantum states, rather then
on the polarizations of the different nuclei.
4.2.4. The polarizations of an e–n8 system
We now extend our simulations and consider a spin system

with one electron and Nc = 8 nuclei. These calculations were per-
formed using the Hilbert space approach discussed in Section 3.2.
We chose a two-dimensional (x,z) spin system, as shown in the
inserts of Fig. 11, with the hfi terms and dipolar parameters calcu-
lated by relative positions of the spins. The external magnetic field
points in the z-direction. In Fig. 11a and c we show the steady
state end polarizations of all nuclei as a function of the DQ MW
off-resonance value DxDQ = Dxe �xn. These simulations were
performed without (a) and with (c) the nuclear dipole–dipole
interactions taken into account. A constant nuclear spin–lattice
relaxation time of T�1

1;i ¼ 0:5 s�1 was used for all nuclei with

i = 1,. . .,Nb and the T�1
1;kk0 rates were evaluated assuming that the

linear operators Sx and Ix,i are the source of relaxation.
To understand the results of these simulations we must realize

that the two nearest nuclei (red and magenta) have about equal
secular hyperfine terms. This results in two bands in their DQ spec-
trum, while the DQ spectra of the other nuclei consist of three
bands. Each band is composed of many DQ transitions, with
frequencies determined by the hfi of all other nuclei. Looking at
the remote nuclei, the DQ central band has a higher transition den-
sity than the two other bands, which results in Fig. 11a in higher
polarizations. The band structure of the polarization profiles are
a consequence of the (small) size of our system. In reality, when
many spins are involved and we are dealing with amorphous
samples, there will not be any band structure. This can be seen
in the DQ and ZQ EPR spectrum in Fig. 2. In general, the effective
MW irradiation field decreases for increasing distance, and when
coordinates of the nucleus approach xi = 0 or, zi = 0. These argu-
ments explain the features of the individual polarizations in
Fig. 11a and c.

The introduction of the dipolar interaction results in an increase
in the polarizations of those nuclei i that are coupled to neighbors j



Fig. 12. The steady state end nuclear polarizations during a DQ SE-DNP experimen
on an e–n8 spin system. The nuclear system differs from the one in Fig. 11. Here the
two nuclei closest to the electron are moved to positions removed from the
electron, as can be seen in the insert. The effect of the removal of the two neares
nuclei on the populations can be observed clearly by comparing the end state
polarizations with their values in Fig. 11a and c. Here the dipolar interaction was
taken into account in (b), but not in (a). The hfi coefficients of the removed nucle
are Az = [0.01,0.01] MHz and A± = [0.03,0.01] MHz. All other parameters are given in
Table 1 with the same T�1

1;n for all nuclei. The calculation was performed using the
Hilbert space model.

Fig. 11. The nuclear polarizations during a DQ SE-DNP experiment on an e–n8 system. The nuclei are arranged in the x–z plane, as shown in the insert, with the external
magnetic field pointing in the z-direction. The nuclei are marked by different colors, and their coordinates are determined relative to the electron (open circle) at the origin.
The colors on the polarization profiles correspond to the color of the nuclei in the insert. The simulations were performed without (a and b) and with (c–f) taking the nuclear
dipole–dipole interactions into account. In (a–d) nuclear relaxation rates of T�1

1;n ¼ 0:5 s�1 were used for all nuclei. In (e and f) the T1,i values were calculated for each nuclei i
using T1;i ¼ ðA�i Þ

2T�1
1A þ T�1

1;n;0, with T�1
1A ¼ 0:2 s�1 and T1

1;n;0 ¼ 0:05 s�1. In (a, c, e) the steady state end polarizations are drawn as a function of the MW frequency around the DQ
transitions. In (b, d, f) the buildup of the polarizations with time are shown, for MW irradiation at DxDQ = Dxe �xn = 0. The inserts in (b and d) correspond to a �10
magnification of the end polarization. Note the change in time-scale in (f). The hfi coefficients of the nuclei, going from left to right and from bottom to top, are
Az = [2.86,�2.78,�0.46,0.09,�0.33,�0.06,0.060.004] MHz and A± = [2.11,0.70,1.38,0.28,0.28,0.17,0.07,0.08] MHz. The dipolar interactions between nearest neighboring
nuclei are all in the order of 4 or 2 kHz. The nuclei marked in black have the same hyperfine coefficients as in Figs. 4–8, and the same effective irradiation as nuclei 1 in Fig. 9
(black line). All other parameters are as given in Table 1. The calculation was performed using the Hilbert space model.
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with similar Azj values. This can be observed from a comparison be-
tween Fig. 11a and c, where the dipole–dipole interaction between
the nuclei is added to the simulations only in the later. Fig. 11b and
d shows the polarization buildup with time, for a DQ MW irradia-
tion at DxDQ = 0, using the same parameters as in Fig. 11a, c,
respectively. In both cases the polarization reaches its steady state
in a time of the order of T1,n.

Let us now introduce a relaxation mechanism that relies on the
hyperfine terms of the laboratory Hamiltonian, in a e–n8 spin sys-
tem with parameters as in Fig. 11c and d. Because of the distance
dependence of the hfi coefficients, this relaxation mechanism will
create a gradient in the effective T�1

1;i values with i = 1,. . .,Nb. For
thermal fluctuations, or by considering T�1

1;e as the correlation time
of motion, of the interaction terms that are determined by A�i SzI�i ,
we can evaluate single transition T�1

1;kk0 ’s by starting with single
nuclear spin–lattice relaxation rates T�1

1;i ¼ ðA
�
i Þ

2T�1
1A þ T�1

1n0 and fol-
lowing the derivation introduced in Section 2.1. In our simulations
we have taken T�1

1A ¼ 0:2 s�1 and a constant T�1
1;n0 ¼ 0:05 s�1. The

result for the polarizations in this case are shown in Fig. 11e and
f. Interestingly, the spins with the higher relaxation rates (e.g. with
shorter electron–nuclear distances) have lower end polarizations
than their values in Fig. 11c and d, while more removed nuclei
have enlarged end polarizations. These relaxation parameters
result in a decrease in the buildup times of the polarization when
compared with these times in Fig. 11b and d (Note the change in
the time axis in Fig. 11f relative to Fig. 11b and d). Similar results
were obtained from calculations of the polarization profiles with
Az;iS

�I�i and A2�
i S�I	i as our relaxation source (data not shown). This

again shows the similarity of the effects of T�1
1;n and T�1

1;DQ on the end
polarizations, as discussed around Fig. 6. These results give us a
glimpse of the complex dependence of the SE-DNP enhancement
process on the relaxation parameters.
t

t

i
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Finally, in Fig. 12 we show the effect of the removal of the core
nuclei close to the electron. This narrows the DQ spectra of the
remaining nuclei, and results in an increase of their end polariza-
tions. For this calculation two new nuclei further removed from
the electron were introduced. Once again, the calculations were
done (a) without and (b) with the presence of the nuclear dipolar
interaction, and with a constant spin–lattice relaxation rate for
all nuclei, T�1

1;n ¼ 0:5 s�1. While the dipolar interaction has little
effect on the nuclei close to the electron, the polarizations of nuclei
removed from the electron, with hardly any hfi, depend solely on
the dipolar spin diffusion mechanism.

5. Conclusions

The aim of this paper has been to present a renewed perspective
of the SE-DNP process using computer simulations based on the
spin density matrix representation of the electron–nuclear system
while taking relaxation into account. As mentioned in the intro-
duction, previous theoretical treatments of DNP were mostly based
on phenomenological rate equations for the bulk polarization. In
this work we have shown that important insights can be obtained
by considering the full quantum nature of the MW irradiated spin
system. The limitation of this type of approach is of course that it
can only be applied for small model spin systems, especially when
using Liouville space calculations. To enlarge the spin system, we
used a Hilbert space approach (reducing the dimension of the cal-
culations from 4N � 4N to 2N � 2N) based on rate equations for the
populations of the eigenstates of the spin system. In this way we
were able to perform simulations for a system of up to nine-spins
with relatively short calculation times (typically minutes), which
enabled probing the parameter space affecting the result of the
DNP process.

We found that the introduction of a multi-nuclei configuration
broadens the frequency range of the SE while reducing its effi-
ciency. This broadening originates from the hfi of the nuclei in
the core and strongly depends on the core configuration, indicat-
ing that dilute core systems can enhance the end polarizations at
the edge of the core. Additionally, our calculations indicate that
nuclear relaxation gradients can increase the polarizations of the
removed nuclei. Above all, they demonstrate the complex depen-
dence of the enhancement mechanism on all relevant parameters
of the system.

Only in the last example, we have mentioned the important
spin diffusion process that enhances bulk nuclei. This subject will
be investigated further in the near future. In an additional publica-
tion we will discuss theoretical aspects of the Cross Effect and
demonstrate the interaction and relaxation dependence of its effi-
ciency to polarize core nuclei by showing numerical results.

Acknowledgements

We thank Dr. Rangeet Bhattacharyya for his contribution at the
early stages of this work. S.V. holds the Joseph and Marian Robbins
Chair in Chemical Physics. This research is made in part possible by
the historic generosity of the Harold Perlman Family.

Appendix A. Ideal polarization transfer in a multi-nuclear core

To demonstrate the potential of the SE-DNP to enhance all the
nuclear spins we consider a system of a single electron hfi coupled
to Nc core nuclei, where the dipolar interaction between them is
neglected. We consider an ideal situation, in which the MW irradi-
ation can excite and saturate all DQ transitions in the system and
T�1

1;e � T�1
1n;DQ ;ZQ for all transitions. All states jbe; ðM � 1Þ�mi are con-

nected via the effective MW irradiation to at least one other state
of the form jae; M�

m0 i. Then the combination of the ideal DQ MW
irradiation together with a T�1
1;e relaxation rate brings the popula-

tions for all m and m
0

states to a steady state value according to:

pbe ;ðM�1Þ�m ðtÞ ¼ pae ;M�m0
ðtÞ; ðA1Þ

pae ;M�m
ðtÞ

pbe ;M
�
m
ðtÞ ¼ ee;

which in turn leads to:

eepbe ;M
�
m
ðtÞ ¼ pae ;M�m

ðtÞ ¼ pbe ;ðM�1Þ�m0
ðtÞ ¼ e�1

e pae ;ðM�1Þ�m0
ðtÞ: ðA2Þ

To simplify this derivation we neglected the thermal equilib-
rium nuclear polarization, en = 1. Starting with the populations of
the single states jae, (Nc/2)*i and jbe, (Nc/2)*i the other populations
become for all m:

pae ;M�m
ðtÞ ¼ eNc=2�Mpae ;ðNc=2Þ�

pbe ;M
�
m
ðtÞ ¼ eNc=2�Mpbe ;ðNc=2Þ� ðA3Þ

The number of states for each M manifold is given by the bino-

mial coefficient nM ¼
Nc

M þ Nc=2

� �
, and the total population of all

states is:

Q ¼
X

M

nmeNc=2�M
e ð1þ eeÞpbe ;ðNc=2Þ� ðtÞ: ðA4Þ

Normalization by setting Q = 1 determines the value of pbe ;ðNc=2Þ� :

pbe ;ðNc=2Þ� ðtÞ ¼ ð1þ eeÞ�ðNcþ1Þ
: ðA5Þ

At this point we can evaluate the polarizations of all nuclei. The
polarization of the ith nucleus is calculated using all 2Nc�1 popula-
tion differences of the form ðpbe ;a�i ;M

0�
m
þ pae ;a�i ;M

0�
m
� pbe ;b

�
i ;M

0�
m
� pae ;

b�i ;M
0�
mÞ, where each of the M

0
= �(Nc/2 � 1/2), . . . , (Nc/2 � 1/2)

states of all j – i nuclei has n0M ¼
ðNc � 1Þ

M0 þ ðNc � 1Þ=2

� �
different M0�

m

values. Using Eq. (A3), the end polarization of this nucleus becomes

P1ðtÞ ¼
1
2

Q�1
X
M0�

n0MeðNc�1Þ=2�M0
e ð1þ eeÞð1� eeÞpbe ;ae ;ðNc=2�1=2Þ� : ðA6Þ

Combining this with Eqs. (A4) and (A5) results in an end polar-
ization of

PiðtÞ ¼
1
2

1� ee

1þ ee
ðA7Þ

for all nuclei i. This is exactly equal to the electron polarization at
t = 0. This ideal case can of course also be considered for ZQ irradi-
ation, and will result in end polarizations of all nuclei that are equal
to �Pe(0).
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